We give the triangular factorization algorithm of toeplitz type matrices in the end 繼而推導toeplitz型矩陣的快速三角分解算法。
We give the triangular factorization algorithm of loewner type matrices in the end 繼而推導loewner型矩陣的快速三角分解的算法。
We give the triangular factorization algorithm of symmetric loewner type matrices in the end 繼而推導對稱loewner型矩陣的快速三角分解算法。
It is mainly to some simple matrices to the research of the fast triangular factorization algorithms of special matrices up to now 對于特殊矩陣的快速三角分解算法的研究,目前主要是對一些較簡單的矩陣進行的。
In 7 , we first give the definition of hankel matrices , then we give the triangular factorization algorithm of the inversion of hankel matrices 在7中,首先給出hankel矩陣的定義,然后推導hankel矩陣的逆矩陣的快速三角分解算法。
In 4 , we first give the definition of loewner type matrices , then we give the triangular factorization algorithm of the inversion of loewner type matrices 在4中,首先給出loewner型矩陣的定義,然后推導loewner型矩陣的逆矩陣的快速三角分解算法。
In 3 , we first give the definition of toeplitz type matrices , then we give the triangular factorization algorithm of the inversion of toeplitz type matrices 在3中,首先給出toeplitz型矩陣的定義,然后推導toeplitz型矩陣的逆矩陣的快速三角分解算法。
In 6 , we first give the definition of vandermonde type matrices , then we give the triangular factorization algorithm of the inversion of vandermonde type matrices 在6中,首先給出vandermonde型矩陣的定義,然后推導vandermonde型矩陣的逆矩陣的快速三角分解算法。
In 5 , we first give the definition of symmetric loewner type matrices , then we give the triangular factorization algorithm of the inversion of symmetric loewner type matrices 在5中,首先給出對稱loewner型矩陣的定義,然后推導對稱loewner型矩陣的逆矩陣的快速三角分解算法。
In this paper , we research some more general special matrices , for example , teoplitz type matrices , loewner type matrices , symmetrical loewner matrices and vandermonde type matrices , and so on . we respectively get their fast triangular factorization algorithms according to the character of these special matrices 本文研究更廣類型的一些特殊矩陣,如toeplitz型矩陣、 loewner型矩陣、對稱loewner型矩陣以及vandermonde型矩陣等,根據這些特殊矩陣的結構特點,給出了相應的快速三角分解算法。